Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/5802
Nhan đề: FedMEKT: Distillation-based embedding knowledge transfer for multimodal federated learning
Tác giả: Le, Q. Huy
Nguyen, Huu Nhat Minh
Thwal, Chu Myaet
Qiao, Yu
Zhang, Chaoning
Hong, Choong Seon
Từ khoá: Federated learning
personal data
decentralized machine learning
FL approaches
autoencoder
Năm xuất bản: thá-2025
Nhà xuất bản: Elsevier
Tóm tắt: Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data. Most existing works have focused on designing FL systems for unimodal data, limiting their potential to exploit valuable multimodal data for future personalized applications. Moreover, the majority of FL approaches still rely on labeled data at the client side, which is often constrained by the inability of users to self-annotate their data in real-world applications. In light of these limitations, we propose a novel multimodal FL framework, namely FedMEKT, based on a semi-supervised learning approach to leverage representations from different modalities. To address the challenges of modality discrepancy and labeled data constraints in existing FL systems, our proposed FedMEKT framework comprises local multimodal autoencoder learning, generalized multimodal autoencoder construction, and generalized classifier learning. Bringing this concept into the proposed framework, we develop a distillation-based multimodal embedding knowledge transfer mechanism which allows the server and clients to exchange joint multimodal embedding knowledge extracted from a multimodal proxy dataset. Specifically, our FedMEKT iteratively updates the generalized global encoders with joint multimodal embedding knowledge from participating clients through upstream and downstream multimodal embedding knowledge transfer for local learning. Through extensive experiments on four multimodal datasets, we demonstrate that FedMEKT not only achieves superior global encoder performance in linear evaluation but also guarantees user privacy for personal data and model parameters while demanding less communication cost than other baselines.
Mô tả: Neural Networks; Volume 183, 107017
Định danh: https://doi.org/10.1016/j.neunet.2024.107017
https://elib.vku.udn.vn/handle/123456789/5802
Bộ sưu tập: NĂM 2025

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.