Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/6186
Nhan đề: Fine-Tuning Mini Language Models for Legal Multiple-Choice Question Answering: A Comparative Study of Phi-3.5, Qwen 2.5 and Llama 3.2
Tác giả: Nguyen, Huu Khanh
Nguyen, Van Viet
Nguyen, Kim Son
Luong, Thi Minh Hue
Nguyen, T. Vinh
Vu, Duc Quang
Nguyen, Cong Huu
Từ khoá: Mini language models
CaseHold
Phi-3.5
Qwen 2.5
Llama 3.2
Legal Question-Answering
Năm xuất bản: thá-2026
Nhà xuất bản: Springer Nature
Tóm tắt: In this study, we explore the mini language models applications in legal domain, specifically Phi-3.5 Mini, Qwen 2.5 3B and Llama 3.2 3B, for legal multiple-choice question answering. We fine-tuned these models on CaseHOLD dataset to adapt them to the structural and semantic nuances of legal language and reasoning. The results show that fine-tuning improves performance of these models significantly with Phi-3. 5 Mini achieved a Micro F1 score of 76.93%, exceeding previous bests for the field of miniaturised models. Also, Qwen 2.5 3B and Llama 3.2 3B scored similarly competitive scores of 74.27% and 75.40%, respectively, reinforcing their viability as resource-efficient options compared to larger models. Mini language models offer competitive performance with specialize models like Legal-BERT, Caselaw-BERT, while operating on a lower computational resources and ability of natural language understanding. The results from this study illuminate the potential of mini language models as a way to increase access to state-of-art legal natural language processing tools and proposes directions for additional future work to continue exploring their versatility across various legal task and datasets.
Mô tả: Lecture Notes in Networks and Systems (LNNS,volume 1581); The 14th Conference on Information Technology and Its Applications (CITA 2025) ; pp: 671-682
Định danh: https://doi.org/10.1007/978-3-032-00972-2_49
https://elib.vku.udn.vn/handle/123456789/6186
ISBN: 978-3-032-00971-5 (p)
978-3-032-00972-2 (e)
Bộ sưu tập: CITA 2025 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.