Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/6190
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorNguyen, Kim-
dc.contributor.authorTran, Van Hoang-
dc.contributor.authorNguyen, Viet Thien Nhan-
dc.contributor.authorPhan, Thanh Dat-
dc.contributor.authorDo, Tien-
dc.contributor.authorNgo, Thanh Duc-
dc.date.accessioned2026-01-19T09:14:07Z-
dc.date.available2026-01-19T09:14:07Z-
dc.date.issued2026-01-
dc.identifier.isbn978-3-032-00971-5 (p)-
dc.identifier.isbn978-3-032-00972-2 (e)-
dc.identifier.urihttps://doi.org/10.1007/978-3-032-00972-2_45-
dc.identifier.urihttps://elib.vku.udn.vn/handle/123456789/6190-
dc.descriptionLecture Notes in Networks and Systems (LNNS,volume 1581); The 14th Conference on Information Technology and Its Applications (CITA 2025) ; pp: 621-633vi_VN
dc.description.abstractTraffic surveillance systems face challenges in vehicle detection in dense environments due to occlusions, pedestrians, and adverse conditions such as nighttime glare. Non-vehicle objects, including road signs and billboards, create noise and false positives, reducing detection accuracy and reliability. To address these issues, we propose a two-stage refinement framework: a pre-trained Co-DETR model eliminates irrelevant objects, followed by fine-tuned deep-learning models for precise vehicle detection. Additionally, detection stability is enhanced with Weighted Boxes Fusion (WBF), and image quality is improved through NAFNet for restoration and GSAD for low-light enhancement. Our approach significantly improves accuracy and robustness, achieving a mean Average Precision (mAP) of 0.9022 and a final score of 0.7779, which combines the F1 score and mAP, on the SoICT Hackathon 2024—Traffic Vehicle Detection Dataset.vi_VN
dc.language.isoenvi_VN
dc.publisherSpringer Naturevi_VN
dc.subjectObject detectionvi_VN
dc.subjectVehicle detectionvi_VN
dc.subjectTraffic vehicle detectionvi_VN
dc.titleA Two-Stage Refinement Framework for Robust Vehicle Detection in Traffic Surveillancevi_VN
dc.typeWorking Papervi_VN
Bộ sưu tập: CITA 2025 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.