Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/6190Toàn bộ biểu ghi siêu dữ liệu
| Trường DC | Giá trị | Ngôn ngữ |
|---|---|---|
| dc.contributor.author | Nguyen, Kim | - |
| dc.contributor.author | Tran, Van Hoang | - |
| dc.contributor.author | Nguyen, Viet Thien Nhan | - |
| dc.contributor.author | Phan, Thanh Dat | - |
| dc.contributor.author | Do, Tien | - |
| dc.contributor.author | Ngo, Thanh Duc | - |
| dc.date.accessioned | 2026-01-19T09:14:07Z | - |
| dc.date.available | 2026-01-19T09:14:07Z | - |
| dc.date.issued | 2026-01 | - |
| dc.identifier.isbn | 978-3-032-00971-5 (p) | - |
| dc.identifier.isbn | 978-3-032-00972-2 (e) | - |
| dc.identifier.uri | https://doi.org/10.1007/978-3-032-00972-2_45 | - |
| dc.identifier.uri | https://elib.vku.udn.vn/handle/123456789/6190 | - |
| dc.description | Lecture Notes in Networks and Systems (LNNS,volume 1581); The 14th Conference on Information Technology and Its Applications (CITA 2025) ; pp: 621-633 | vi_VN |
| dc.description.abstract | Traffic surveillance systems face challenges in vehicle detection in dense environments due to occlusions, pedestrians, and adverse conditions such as nighttime glare. Non-vehicle objects, including road signs and billboards, create noise and false positives, reducing detection accuracy and reliability. To address these issues, we propose a two-stage refinement framework: a pre-trained Co-DETR model eliminates irrelevant objects, followed by fine-tuned deep-learning models for precise vehicle detection. Additionally, detection stability is enhanced with Weighted Boxes Fusion (WBF), and image quality is improved through NAFNet for restoration and GSAD for low-light enhancement. Our approach significantly improves accuracy and robustness, achieving a mean Average Precision (mAP) of 0.9022 and a final score of 0.7779, which combines the F1 score and mAP, on the SoICT Hackathon 2024—Traffic Vehicle Detection Dataset. | vi_VN |
| dc.language.iso | en | vi_VN |
| dc.publisher | Springer Nature | vi_VN |
| dc.subject | Object detection | vi_VN |
| dc.subject | Vehicle detection | vi_VN |
| dc.subject | Traffic vehicle detection | vi_VN |
| dc.title | A Two-Stage Refinement Framework for Robust Vehicle Detection in Traffic Surveillance | vi_VN |
| dc.type | Working Paper | vi_VN |
| Bộ sưu tập: | CITA 2025 (International) | |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.