Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/6190
Nhan đề: A Two-Stage Refinement Framework for Robust Vehicle Detection in Traffic Surveillance
Tác giả: Nguyen, Kim
Tran, Van Hoang
Nguyen, Viet Thien Nhan
Phan, Thanh Dat
Do, Tien
Ngo, Thanh Duc
Từ khoá: Object detection
Vehicle detection
Traffic vehicle detection
Năm xuất bản: thá-2026
Nhà xuất bản: Springer Nature
Tóm tắt: Traffic surveillance systems face challenges in vehicle detection in dense environments due to occlusions, pedestrians, and adverse conditions such as nighttime glare. Non-vehicle objects, including road signs and billboards, create noise and false positives, reducing detection accuracy and reliability. To address these issues, we propose a two-stage refinement framework: a pre-trained Co-DETR model eliminates irrelevant objects, followed by fine-tuned deep-learning models for precise vehicle detection. Additionally, detection stability is enhanced with Weighted Boxes Fusion (WBF), and image quality is improved through NAFNet for restoration and GSAD for low-light enhancement. Our approach significantly improves accuracy and robustness, achieving a mean Average Precision (mAP) of 0.9022 and a final score of 0.7779, which combines the F1 score and mAP, on the SoICT Hackathon 2024—Traffic Vehicle Detection Dataset.
Mô tả: Lecture Notes in Networks and Systems (LNNS,volume 1581); The 14th Conference on Information Technology and Its Applications (CITA 2025) ; pp: 621-633
Định danh: https://doi.org/10.1007/978-3-032-00972-2_45
https://elib.vku.udn.vn/handle/123456789/6190
ISBN: 978-3-032-00971-5 (p)
978-3-032-00972-2 (e)
Bộ sưu tập: CITA 2025 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.