Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/6190| Nhan đề: | A Two-Stage Refinement Framework for Robust Vehicle Detection in Traffic Surveillance |
| Tác giả: | Nguyen, Kim Tran, Van Hoang Nguyen, Viet Thien Nhan Phan, Thanh Dat Do, Tien Ngo, Thanh Duc |
| Từ khoá: | Object detection Vehicle detection Traffic vehicle detection |
| Năm xuất bản: | thá-2026 |
| Nhà xuất bản: | Springer Nature |
| Tóm tắt: | Traffic surveillance systems face challenges in vehicle detection in dense environments due to occlusions, pedestrians, and adverse conditions such as nighttime glare. Non-vehicle objects, including road signs and billboards, create noise and false positives, reducing detection accuracy and reliability. To address these issues, we propose a two-stage refinement framework: a pre-trained Co-DETR model eliminates irrelevant objects, followed by fine-tuned deep-learning models for precise vehicle detection. Additionally, detection stability is enhanced with Weighted Boxes Fusion (WBF), and image quality is improved through NAFNet for restoration and GSAD for low-light enhancement. Our approach significantly improves accuracy and robustness, achieving a mean Average Precision (mAP) of 0.9022 and a final score of 0.7779, which combines the F1 score and mAP, on the SoICT Hackathon 2024—Traffic Vehicle Detection Dataset. |
| Mô tả: | Lecture Notes in Networks and Systems (LNNS,volume 1581); The 14th Conference on Information Technology and Its Applications (CITA 2025) ; pp: 621-633 |
| Định danh: | https://doi.org/10.1007/978-3-032-00972-2_45 https://elib.vku.udn.vn/handle/123456789/6190 |
| ISBN: | 978-3-032-00971-5 (p) 978-3-032-00972-2 (e) |
| Bộ sưu tập: | CITA 2025 (International) |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.