Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/6200
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorHuynh, Cong Phap-
dc.contributor.authorHoang, Quoc Viet-
dc.contributor.authorNguyen, Pham Song Nguyen-
dc.contributor.authorNguyen, Xuan Mai Thao-
dc.contributor.authorDang, Dai Tho-
dc.date.accessioned2026-01-19T09:48:22Z-
dc.date.available2026-01-19T09:48:22Z-
dc.date.issued2026-01-
dc.identifier.isbn978-3-032-00971-5 (p)-
dc.identifier.isbn978-3-032-00972-2 (e)-
dc.identifier.urihttps://doi.org/10.1007/978-3-032-00972-2_35-
dc.identifier.urihttps://elib.vku.udn.vn/handle/123456789/6200-
dc.descriptionLecture Notes in Networks and Systems (LNNS,volume 1581); The 14th Conference on Information Technology and Its Applications (CITA 2025) ; pp: 479-489vi_VN
dc.description.abstractSentiment analysis incorporating emojis has gained increasing attention in recent years, as emojis serve as visual symbols that convey emotional nuances and contextual information, helping to fill the gap left by the absence of non-verbal signals in digital communication. While integrating emojis has significantly enhanced sentiment analysis performance, this aspect remains underexplored in Vietnamese. This study proposes integrating emojis into sentiment analysis through the creation of an emoji description dictionary (called the Vietnamese emoji dictionary). During preprocessing, emojis are replaced with corresponding descriptions to preserve the original emotional intent of the author. Furthermore, our method leverages PhoBERT, a state-of-the-art pre-trained model for Vietnamese text processing. Experimental evaluations on two benchmark datasets demonstrate that the proposed approach (VED_PhoBERT (https://github.com/hqvjet/VivelAI/tree/VED_PhoBERT)) outperforms the previous best-performing model, ViSoBERT, in sentiment analysis task.vi_VN
dc.language.isoenvi_VN
dc.publisherSpringer Naturevi_VN
dc.subjectVED_PhoBERTvi_VN
dc.subjectViSoBERTvi_VN
dc.subjectPhoBERTvi_VN
dc.subjectSentiment analysisvi_VN
dc.subjectEmojivi_VN
dc.subjectVietnamesevi_VN
dc.titleVED_PhoBERT: Enhancing Vietnamese Sentiment Analysis with Emoji Descriptions Integrationvi_VN
dc.typeWorking Papervi_VN
Bộ sưu tập: CITA 2025 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.