Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/6200Toàn bộ biểu ghi siêu dữ liệu
| Trường DC | Giá trị | Ngôn ngữ |
|---|---|---|
| dc.contributor.author | Huynh, Cong Phap | - |
| dc.contributor.author | Hoang, Quoc Viet | - |
| dc.contributor.author | Nguyen, Pham Song Nguyen | - |
| dc.contributor.author | Nguyen, Xuan Mai Thao | - |
| dc.contributor.author | Dang, Dai Tho | - |
| dc.date.accessioned | 2026-01-19T09:48:22Z | - |
| dc.date.available | 2026-01-19T09:48:22Z | - |
| dc.date.issued | 2026-01 | - |
| dc.identifier.isbn | 978-3-032-00971-5 (p) | - |
| dc.identifier.isbn | 978-3-032-00972-2 (e) | - |
| dc.identifier.uri | https://doi.org/10.1007/978-3-032-00972-2_35 | - |
| dc.identifier.uri | https://elib.vku.udn.vn/handle/123456789/6200 | - |
| dc.description | Lecture Notes in Networks and Systems (LNNS,volume 1581); The 14th Conference on Information Technology and Its Applications (CITA 2025) ; pp: 479-489 | vi_VN |
| dc.description.abstract | Sentiment analysis incorporating emojis has gained increasing attention in recent years, as emojis serve as visual symbols that convey emotional nuances and contextual information, helping to fill the gap left by the absence of non-verbal signals in digital communication. While integrating emojis has significantly enhanced sentiment analysis performance, this aspect remains underexplored in Vietnamese. This study proposes integrating emojis into sentiment analysis through the creation of an emoji description dictionary (called the Vietnamese emoji dictionary). During preprocessing, emojis are replaced with corresponding descriptions to preserve the original emotional intent of the author. Furthermore, our method leverages PhoBERT, a state-of-the-art pre-trained model for Vietnamese text processing. Experimental evaluations on two benchmark datasets demonstrate that the proposed approach (VED_PhoBERT (https://github.com/hqvjet/VivelAI/tree/VED_PhoBERT)) outperforms the previous best-performing model, ViSoBERT, in sentiment analysis task. | vi_VN |
| dc.language.iso | en | vi_VN |
| dc.publisher | Springer Nature | vi_VN |
| dc.subject | VED_PhoBERT | vi_VN |
| dc.subject | ViSoBERT | vi_VN |
| dc.subject | PhoBERT | vi_VN |
| dc.subject | Sentiment analysis | vi_VN |
| dc.subject | Emoji | vi_VN |
| dc.subject | Vietnamese | vi_VN |
| dc.title | VED_PhoBERT: Enhancing Vietnamese Sentiment Analysis with Emoji Descriptions Integration | vi_VN |
| dc.type | Working Paper | vi_VN |
| Bộ sưu tập: | CITA 2025 (International) | |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.