Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/6200
Nhan đề: VED_PhoBERT: Enhancing Vietnamese Sentiment Analysis with Emoji Descriptions Integration
Tác giả: Huynh, Cong Phap
Hoang, Quoc Viet
Nguyen, Pham Song Nguyen
Nguyen, Xuan Mai Thao
Dang, Dai Tho
Từ khoá: VED_PhoBERT
ViSoBERT
PhoBERT
Sentiment analysis
Emoji
Vietnamese
Năm xuất bản: thá-2026
Nhà xuất bản: Springer Nature
Tóm tắt: Sentiment analysis incorporating emojis has gained increasing attention in recent years, as emojis serve as visual symbols that convey emotional nuances and contextual information, helping to fill the gap left by the absence of non-verbal signals in digital communication. While integrating emojis has significantly enhanced sentiment analysis performance, this aspect remains underexplored in Vietnamese. This study proposes integrating emojis into sentiment analysis through the creation of an emoji description dictionary (called the Vietnamese emoji dictionary). During preprocessing, emojis are replaced with corresponding descriptions to preserve the original emotional intent of the author. Furthermore, our method leverages PhoBERT, a state-of-the-art pre-trained model for Vietnamese text processing. Experimental evaluations on two benchmark datasets demonstrate that the proposed approach (VED_PhoBERT (https://github.com/hqvjet/VivelAI/tree/VED_PhoBERT)) outperforms the previous best-performing model, ViSoBERT, in sentiment analysis task.
Mô tả: Lecture Notes in Networks and Systems (LNNS,volume 1581); The 14th Conference on Information Technology and Its Applications (CITA 2025) ; pp: 479-489
Định danh: https://doi.org/10.1007/978-3-032-00972-2_35
https://elib.vku.udn.vn/handle/123456789/6200
ISBN: 978-3-032-00971-5 (p)
978-3-032-00972-2 (e)
Bộ sưu tập: CITA 2025 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.