Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/955
Nhan đề: | Deep feature extractors for small object detection in aerial images |
Tác giả: | Nguyen, Hai Q. Tran, Vinh P. Nguyen, D. Vo Nguyen, Khang |
Từ khoá: | Deep Learning Small Object Detection Computer Vision Aerial Image |
Năm xuất bản: | 2019 |
Nhà xuất bản: | Da Nang Publishing House |
Tóm tắt: | Convolutional Neural Networks (CNNs) are considerably developed year by year for better accuracy. New CNN architectures such as residual network (ResNet) are believed to replace the old ones (e.g. VGG) in all tasks. In this paper, we give evidence to prove that VGG is still useful for some specific tasks. We focus on training RetinaNet object detector on VisDrone dataset using ResNet and VGG as the backbone to detect four types of vehicle, which usually occupy small numbers of pixels in aerial images. From our experiments, we evaluate the effect of two mentioned CNN types on detecting small objects in images and undergo some incredible works from VGG – a sequential neural network. |
Mô tả: | Scientific Paper; Pages: 1-8 |
Định danh: | http://elib.vku.udn.vn/handle/123456789/955 |
Bộ sưu tập: | CITA 2019 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.