Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/5787| Nhan đề: | A Rich High-Order Mutation Testing Dataset for Software Fortification |
| Tác giả: | Do, Van Nho Tran, Giang T.C Nguyen, Duc Thuan Nguyen, Thi Ngoc Anh Nguyen, Quang Vu Nguyen, Thanh Binh |
| Từ khoá: | High order mutation testing Data dataset data generation machine learning |
| Năm xuất bản: | thá-2024 |
| Nhà xuất bản: | Journal on Information Technologies & Communications |
| Tóm tắt: | High-order mutation (HOM) testing is a rigorous technique for evaluating the effectiveness of test suites by introducing mutations with multiple concurrent faults into the source code. In this study, we present the development and analysis of a comprehensive dataset tailored for HOM testing purposes. The dataset comprises 2,839,792 instances categorized into Survived and Killed classes, representing instances correctly identified as surviving and not surviving the mutation testing process, respectively. We employ four prominent machine learning algorithms—Logistic Regression, Random Forest Classifier, LightGBM, and XGBoost—to classify instances within these categories. Experimental results demonstrate varying levels of accuracy, precision, recall, and F1-score across the algorithms, with LightGBM and XGBoost exhibiting superior performance. These findings underscore the importance of high-quality datasets in facilitating effective HOM testing and provide valuable insights into the capabilities of machine learning algorithms in this context. |
| Mô tả: | Journal on Information Technologies & Communications; Vol 2025 No 1; pp: 19-27 |
| Định danh: | https://doi.org/10.32913/mic-ict-research.v2024.n2.1277 https://elib.vku.udn.vn/handle/123456789/5787 |
| ISSN: | 1859-3534 |
| Bộ sưu tập: | NĂM 2024 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.